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Abstract. There is considerable interest in using low-cost optical particle counters (OPC) to supplement existing
routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data
needs to be cross-comparable with particle mass reference instrumentation, and as yet, there is no widely agreed
methodology. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass
concentrations derived from a low-cost OPC, particularly at high ambient Relative Humidity (RH). Correction
factors have been developed that apply k-Kohler theory to correct for the influence of water uptake by hygroscopic
aerosols. We have used datasets of co-located reference particle measurements and a low-cost OPC (OPC-N2,
Alphasense), collected in four cities in three continents, to explore the performance of this correction factor. We
report evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference
instrumentation, is due to bulk aerosol hygroscopicity under different RH conditions, which is determined by
aerosol composition and in particular the levels of hygroscopic aerosols (sulphate and nitrate). We exploit
measurements made in volcanic plumes in Nicaragua, that are predominantly composed of sulphate aerosol, as a
natural experiment to demonstrate this behaviour in the ambient atmosphere, with the observed humidogram
closely resembling the calculated pure sulphuric acid humidogram. The results indicate that the particle mass
concentrations derived from low-cost OPCs during periods of high RH (> 60 %) need to be corrected for aerosol
hygroscopic growth. We employed a correction factor based on k-Koéhler theory and observed corrected OPC-N2
PM25 mass concentrations to be within 33% of reference measurements at all sites. The results indicated that an
in situ derived « (using suitable reference instrumentation) would lead to the most accurate correction relative to
co-located reference instruments. Applying literature x in the correction factor also resulted in improved

performance of OPC-N2, to be within 50 % of reference. Therefore, for areas where suitable reference
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instrumentation for developing a local correction factor is lacking, using a literature x value can result in a
reasonable correction. For locations with low levels of hygroscopic aerosols and RH, a simple calibration against
gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study
generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed

is likely amenable to other low cost PM sensors.

1.0 Introduction

Advances in miniaturization technology have led to the development of many different kinds of low-cost air
pollution sensors, ranging from passive gas samplers to miniaturized versions of reference instruments (Lewis et
al., 2018;Jayaratne et al., 2018). The term low-cost is relative and typically refers to the sensor being at least an
order of magnitude cheaper than corresponding reference instrumentation (Lewis et al., 2018). Monitoring of key
air pollutants (e.g. PM2s, NOy and Os) has traditionally been performed via reference standard or equivalent
monitors at fixed monitoring stations. However, this approach can lack the necessary spatial coverage to properly
assess personal exposure due to significant spatial heterogeneity in the concentration of air pollutants in urban
areas (de Nazelle et al., 2017). Low-cost sensors are an attractive option due to their reduced costs and portability,
making them viable for mobile or highly spatially resolved measurements, to complement existing monitoring
frameworks. This has led to low-cost sensors becoming a common feature of an increasing number of air pollution

monitoring operations (Snyder et al., 2013;Morawska et al., 2018).

The trade-off with using low-cost sensors are that they are currently not as accurate, precise, selective or sensitive
when compared to research or regulatory grade instrumentation (Mead et al., 2013;Lewis et al., 2018;Lewis et al.,
2016;Smith et al., 2017;Crilley et al., 2018;Borrego et al., 2016;Popoola et al., 2016). Consequently, low-cost
sensors of air pollutants need to be carefully characterised to ensure they meet the specific requirements of the
intended application (Castell et al., 2017). In their review, Morawska et al. (2018) concluded that low-cost sensors
were fit for purpose for many applications, such as supplementing routine air quality measurements and engaging
the public and community groups. However, there is still work needed if low-cost sensors are to be used for
accurate exposure measurements, or in the future for compliance monitoring, which is of particular interest in
under-monitored low and middle-income countries (LMICs). LMICs typically have high urban air pollution yet
the resources and infrastructure are sometimes lacking to support continuous classical reference air quality
measurements (Pope et al., 2018). One of the challenges with using low-cost sensors in this setting is there is
currently no agreed methodology for the evaluation of their accuracy and precision and their subsequent
calibration (Lewis et al., 2018).

A key pollutant for air monitoring networks is airborne particulate matter (PM) due to their well-established
detrimental physical health effects (Cohen et al., 2005;Landrigan et al., 2018). In particular, exposure to fine
particles (PMas, particles with an aerodynamic diameter less than 2.5 um) is known to have multiple disease
pathways (Landrigan et al., 2018). Recently, short term exposure to PM: s has been linked to short term cognitive
decline (Shehab and Pope, 2019). PM,5 mass regulatory limits are based on the dry particle mass concentration
and regulatory-grade particle mass instrumentation dry the aerosol before measurement to record the dry aerosol
mass concentrations. Low-cost optical particle counters (OPC) measure particle diameter and number
concentrations by light scattering and convert this to particle mass concentrations by assuming particle sphericity

and a uniform density. Low-cost OPCs typically do not dry the aerosol before measurement, and this can result
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in over-estimation of the dry particle size (compared to that which would be determined after drying) under high
RH conditions (Crilley et al., 2018;Jayaratne et al., 2018;Di Antonio et al., 2018), thought to be related to the
uptake of water by hygroscopic aerosol. Consequently, the reported PM mass concentrations by low-cost OPC
are of the wet particle mass concentration and these need to be converted to a dry particle mass concentration in
order to have comparability with regulatory standards and reference instrumentation. One solution to measuring
the dry mass of particles would be to add a pre-conditioning drying step prior to the OPC, but this would result in
higher costs, greater power consumption and less instrument portability thereby reducing the unique selling points

(USPs) of low-cost sensor devices.

Recently, a methodology to correct the wet particle mass concentrations to dry mass concentrations was proposed
by Crilley et al. (2018) based upon the k-K&hler theory (Petters and Kreidenweis, 2007). x-Kéhler theory describes
the relationship between particle hygroscopicity and volume by a single value, «, and can be adapted to relate
particle mass to average bulk hygroscopicity at a given RH. Crilley et al. (2018) calculated k values representative
of ambient bulk hygroscopicity using co-located reference instruments to derive a correction factor for the derived
OPC-N2 (Alphasense) particle mass concentrations. Application of this in situ correction factor by Crilley and
co-workers notably improved the OPC-N2 reported PM,5 and PM1o mass concentrations, to be within 33 % of the
reference instrumentation at urban background location with high ambient RH. Subsequently, Di Antonio et al.
(2018) proposed a similar method that applied k-Kéhler theory to correct the particle size distribution measured
by the OPC-N2, and then calculated the particle mass fraction concentration using this corrected particle size.
Using this approach Di Antonio and co-workers also observed notable improvement in the OPC-N2, to be within
43 % of reference PM2s mass concentrations. Di Antonio and co-workers assumed « values for their correction
factor, based upon the assumed major hygroscopic components of the aerosol mix (ammonium sulphate and
sodium chloride), which may not be realistic considering the complex multi-compositional nature of urban

particles.

It is clear that the aerosol hygroscopicity is a key parameter to consider when correcting particle mass
concentration derived by a low-cost OPC (Crilley et al., 2018;Di Antonio et al., 2018). Aerosol hygroscopicity is
dependent on the chemical compounds present, and consequently the derived correction factor may vary from
location to location due to differences in particle bulk composition, shape and density. To investigate this, we
utilised datasets containing co-located particle measurements from reference instruments and a low-cost OPC
collected in four cities in three continents: Birmingham, UK; Nairobi, Kenya; Delhi, India and Beijing, China.
Across these four cities, the airborne particle composition and range of ambient RH varied considerably allowing
for the exploration of sensor performance in response to these factors (composition and RH) and how it affected
the calculated correction factors. We also report measurements taken near a volcano in Nicaragua, at a location

that received regular volcanic plumes that contained particles that were typically chemically homogenous.

2.0 Method

The datasets used in the current work were acquired in several different field campaigns, at different times, but
the same type of low-cost particle sensor was deployed at all five locations, the OPC-N2 manufactured by
Alphasense. This sensor has been described in detail in Sousan et al. (2016) and Crilley et al. (2018) and can be
considered as a miniaturized optical particle counter. The measured particle number concentration by the OPC-

N2 is converted via on board factory calibration to particle mass concentrations for PM1, PM2sand PMyq size
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fraction according to European Standard EN481 (OPC-N2 manual). Data collection with the OPC-N2 followed
the procedures outlined in Crilley et al. (2018) at the four urban locations via a Raspberry Pi employing the py-
opc Python library (Hagan et al., 2018). Uncorrected PM mass concentrations were used without any modification.
In Birmingham, Delhi, Beijing and Nairobi the same inlet length (12 cm 3/8” dia. stainless steel tubing) was used
for each OPC-N2. At Nicaragua, the OPC-N2 was part of the commercially available AQMesh system (Air

Monitors), with uncorrected PM concentrations extracted.

2.2 Measurement Locations

Each site in this study, other than the volcanic Nicaraguan site, are classed as urban background for their respective
cities. We have focused on PM2s mass concentrations in this study, as this particle size fraction was measured by
reference instrumentation at all study sites. We also note that we used a different OPC-N2 sensor at each site.
Previous work has shown that co-located multiple OPC-N2 have an inter-unit precision of 22+13 % for PM1o mass

concentrations (Crilley et al. 2018).
2.2.1 Birmingham, United Kingdom

The OPCs were deployed at two urban background locations in Birmingham. The first was the Birmingham Air
Quality Supersite at EIms Road (BAQS, 52.4554 N, 1.9286 W), located with the University of Birmingham
campus (Alam et al., 2015) and will be referred to as Bham BAQS throughout. The second site was the Tyburn
Road air monitoring station, part of the UK Automatic Rural Urban Network (AURN), referred to as Bham Tyburn
throughout. This dataset has been previously described in Crilley et al. (2018), and the current work focuses on
the long-term measurements (October 2016 till February 2017) at Bham BAQS, using the OPC-N2 that gave the
most complete time series. The reference instrument for PM2 5 mass concentrations measurements at Bham Tyburn
was a Tapered Element Oscillating Microbalance with a Filter Dynamic Measurement System (TEOM-FDMS).
The Bham Tyburn dataset is used to compare to other sites that had the same reference instrument (Beijing and
Delhi, See Sections 2.2.2 and 2.2.3). The reference instrument at Bham BAQS was a GRIMM Portable Aerosol
Sampler (model 1.108) that was serviced and calibrated before the measurements. The GRIMM is an OPC type
device similar to the low cost sensors, but does contain a pre-conditioning step that reduces the internal RH of the
device. Previous work demonstrated that the GRIMM was not affected by RH, based on co-located measurements
with a TEOM-FDMS (Crilley et al., 2018).

2.2.2 Beijing, China

The measurements in Beijing formed part of the Air Pollution and Human Health in a Chinese mega-city (APHH-
Beijing, www.aphh.org.uk), a joint UK-China program addressing air quality in Beijing (Shi et al., 2019). The
measurements took place at the Chinese Academy of Science Institute of Atmospheric Physics (IAP) tower
campus (39.9735 N, 116.3723 E), located in the northern suburbs of Beijing. The OPC-N2 sampled on top of a
shipping container, with a height of approx. 2.5 m from 5"-9"" December 2016. In addition, co-located ground
level measurements with a TEOM-FDMS set to measure PM2s mass concentrations and an Aerodyne Aerosol
Mass Spectrometer (AMS) were obtained (Xu et al., 2019).

2.2.3 Delhi, India
The measurements in Delhi were part of the Air Pollution and Human Health in an Indian mega-city (APHH-

Delhi, www.urbanair-india.org), a joint UK-India project tackling air pollution in Delhi. The sampling location
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was Indian Institute of Technology Delhi (II'TD) main campus in Hauz Khas (28.5464 N, 77.1913 E), located in
the southern suburbs of New Delhi. The instruments were located on the roof (4 stories) of Block IV at IITD. The
inlet for the co-located PM,s5 TEOM-FDMS was approximately 5 m from the OPC-N2 at the same sampling
height. On-line measurements of inorganic aerosol concentrations were provided by an Aerodyne Aerosol
Chemical Speciation Monitor (ACSM), located nearby on the IITD campus in Block V, at the same sampling
height (Gani et al., 2019).

2.2.4 Nairobi, Kenya
The measurements in Nairobi are previously reported in Pope et al. (2018). These measurements are part of the

‘A Systems Approach to Air Pollution’ program (ASAP East Africa, www.asap-eastafrica.com). In the current

work, we used the urban background data that were collected on the rooftop of the American Wing building at
the University of Nairobi (1.2801 S, 36.8163 E). The sampling inlet was at a height of 17 m above ground level
with unobstructed airflow in all directions. The measurement period is from 2 February to 24 March 2017.
Calibration of the OPC was carried out in situ using a standardized gravimetric approach by collocation with of
the OPC and an Anderson dichotomous impactor (Sierra Instruments Inc., USA).

2.2.5 Masaya volcano, Nicaragua

Masaya is an active volcano that is currently degassing and due to its low altitude (600 m a.s.l.) the volcanic plume
causes persistent gas and PM air pollution in nearby populated areas. The presented results are part of the first
study of high temporal and long-term measurements of PM and SO; concentrations in several populated areas
near Masaya volcano. Here we will discuss the results from station 789, set up in Pacaya community (11.9553°N,
86.3013°W, 870 m a.s.l.) 15 km to the west of Masaya volcano. Because it is located at a higher altitude than the
degassing crater, the volcanic plume frequently grounds there. The station was set up at Susie Syke private clinic,
on a post approximately 6 m above ground level, where it was not obstructed by vegetation, buildings or other
objects. The site is not believed to be influenced by firewood burning. It is located ~100 m from a paved highway
(busy during morning and evening rush hours) but is upwind of it during the predominant weather conditions.
Measurements were performed using an ‘AQMesh’ pod, a commercially available sensor package. SO»
concentrations were measured by an Alphasense B4-series electrochemical sensor; while particle concentrations
were measured by the OPC-N2. Note uncorrected particle mass concentrations were extracted from the AQMesh.
The AQMesh was operational between 27 February 2017 and 15 December 2017. Gaps in the data time series are
due to power outages.

2.3 Description of applied correction factor

The methodology for the applied correction factor has previously been described in detail by Crilley et al. (2018).
Briefly, the correction factor uses k-Kéhler theory to relate the particle mass to hygroscopicity for a given RH
(Pope, 2010), according to Eq (1):

("/my,—1)

(e D40

M

Ay

Where ay, is the water activity (aw = RH/100), m and m, are the wet and dry (RH=0 %) particle mass, respectively

while pw and pp are the density of the dry particles and water, respectively. The value for k, which relates the bulk
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aerosol composition to hygroscopicty, can be determined by a non-linear curve fitting of a humidogram, calculated
using the ratio of a wet/dry particle mass as a function of water activity (aw, RH/100). Throughout, we used the
raw mass concentrations as reported by the OPC-N2. We used the reference instrument measurements (TEOM-
FDMS and GRIMM, as indicated in Section 2.2) as the dry particle mass while the raw OPC-N2 is the wet particle
mass concentration. The TEOM-FDMS employs a Nafion dryer and therefore measures dry particle mass
concentration (Grover et al., 2006). Equation (1) can be rearranged to calculate the correction factor C according
to Eq. (2):

K

— Pp
C=1+ T )

aw

The OPC-N2 assumes the ambient particle density to be 1.65 g cm™ across all size bins to derive the particle mass
concentrations from the measured particle number concentrations (Crilley et al., 2018), therefore we have used
this density for the dry particles (pp) in Eq. (2). We also note that we assume both the OPC-N2 and reference
instrument responses are linear over the range of measured concentrations at each site. The raw particle mass
concentration derived by the OPC-N2 are corrected according to Eq. (3):

PMy,
PMcorr = Caw ©)

3 Results and Discussion

A wide range of ambient particle concentrations and relative humidity was observed across the different
measurement locations, with an overview provided in Table 1. Typically, low particle concentrations were
observed in Birmingham and Nairobi with higher levels of humidity in Birmingham compared to Nairobi (Table
1). Meanwhile a high particle load was observed in Delhi and Beijing, as would be expected for winter in these
two cities. In Delhi, there was a wide range of humidities observed (10-100 %), while in Beijing it was relatively
dry (mean of 36+15 %) during the measurement periods. The observed difference in particle load and composition
between sites allows for the effect of relative humidity on the OPC-N2 measurements and the applied correction

factor to be explored in the following sections.

Table 1: Summary of measurement datasets. Reported OPC-N2 PM2s mass concentrations are uncorrected. For
the Nicaragua measurements there was no co-located reference instrumentation. Only one 24 hr average
gravimetric PM. s concentration was available for Nairobi, presented with stated measurement uncertainty.

Site Date RH OPC-N2 PM2s Reference PMazs
(mean +5.d) (ug m?) (ug m®)

Birmingham Oct 2016- Feb 2017 89+10 % 0.3-566 0.5-63

Beijing Dec 2016 36+15 % 3-274 2.7-208

Delhi Jan-Feb 2018 59125 % 12-1113 50-478

Nairobi Feb-Mar 2017 51+18 % 4-135 27.646.8

Nicaragua ~ Feb-Dec 2017 7711 % 0.5-742 ~NA

3.1 Effect of RH on measurement by OPC-N2 at all sites

To explore if there was evidence for an artefact on the OPC-N2 derived PM; s mass concentrations due to RH, we
plotted the reported PM2s mass concentrations by the OPC-N2 as a function of RH (Fig 1). From Fig 1, there is
clear influence of RH on the measurements performed in Delhi and Birmingham, evidenced by the observed

exponential increase in particle mass with RH (Figs 1a and 1d). At Beijing, the observed stepwise increase in the
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derived measured particle mass between a RH of 40-50% RH may point to deliquescence of a predominant PM
component (Fig 1c), explored further in later sections. What is evident from these three sites (Beijing,
Birmingham, Delhi) was there was a large spread in derived PM,s mass concentrations at high RH, which likely
reflects the heterogeneous nature of the particle composition and hence hygroscopicity.

Meanwhile at Nairobi, the derived concentrations by the OPC-N2 appeared to be independent of RH. Typically
during the dry season in Nairobi, airborne mineral dust comprises a large fraction of PM2s (35% annual mean,
(Gaita et al., 2014), which is known to have low hygroscopocity. Furthermore, we note that the measurements in
Nairobi were performed during the dry season and as a result the ambient RH was typically less than 85%, the
RH value identified in Crilley et al. (2018) where the OPC-N2 becomes significantly sensitive to RH. This
combined with the low hygroscopocity of the aerosol in Nairobi, was the likely reason why there was little
evidence for an RH artefact observed for the OPC-N2 (Pope et al., 2018). Therefore, a simple calibration against
gravimetric measurements is likely to be sufficient in locations with low RH and low proportion of hygroscopic
aerosols, such as Nairobi.
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Figure 1: Plot of reported PM_s mass concentration by OPC-N2 against ambient RH for the whole measurement
5 period in Delhi (A), Nairobi (B), Beijing (C), Bham BAQS (D), Nicaragua (E), Bham Tyburn (F). Note the

different y- and x-axis scales.
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As posited in Crilley et al. (2018), the RH artefact on the OPC-N2 was likely related to the ambient aerosol bulk
hygroscopicity. Therefore, we plotted humidograms for sites from Fig. 1 with evidence for an RH effect where
reference particle mass concentration data was available (i.e. Birmingham, Delhi and Beijing; Table 1), shown in
Fig 2. In Beijing, there was insufficient data at high RH due to the short time period of sampling (4 days), and the
factors affecting the response of the OPC-N2 explored in more detail in Section 3.3. A quasi-exponential increase
in the ratio of OPC-N2 to reference instrument concentrations at high RH was observed at Birmingham and Delhi,
as would be expected if the aerosols were undergoing hygroscopic growth (Fig. 2). Using k-Kohler theory (Petters
and Kreidenweis, 2007), calculated k were 0.1 and 0.16 for Birmingham and Delhi, respectively. These k values
are typical for continental regions with high organic loadings (Pringle et al., 2010). While high organic loadings
would be expected for Delhi during winter, there is also significant loadings of hygroscopic aerosols such as
sulphate and nitrate (Gani et al., 2019) and this is explored in more detail later. Differences in aerosol composition
would likely explain why the calculated « at Bham BAQS (0.1) was lower than that observed at Bham Tyburn
(0.38-0.41, Crilley et al. 2018). Previous work in Birmingham demonstrated that the proportion of ammonium
sulphate and nitrate decreases in winter compared to summer (Yin et al., 2010), and may explain the observed
lower « value over winter. What becomes evident from Figure 2 is that different « values were observed at each
site. If the aerosol composition was broadly similar at each site, we would expect the same « value. This suggests

that the aerosol composition varies significantly over the different measurement sites.
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Figure 2: Humidograms with corresponding « fit for Delhi (A), Beijing (B), Bham BAQS (C), Bham Tyburn
(D). Note the different y-axis and x-axis scales. The two-stage correction factor described in Section 3.3.1 has
5 not been applied for these humidograms.

3.2 Effect of aerosol composition on OPC-N2 RH correction factor

3.2.1 Mixed aerosol composition (Urban)

To explore the effect of aerosol composition on correction factor for the OPC-N2, we focus first on the Beijing

and Delhi measurements, as co-located on-line aerosol composition data was available at these two sites. During
10 the measurements in Beijing, there were periods when the OPC-N2 and TEOM were in reasonable agreement,

typically at lower PM concentrations as observed by the regulatory grade equipment. Fig. 3a demonstrates that at

concentrations below ca. 150 pug m, there was linear relationship between reported OPC-N2 and the TEOM

concentrations (r? of 0.85), with a slope of 0.72. When the PM,s mass concentrations were above 150 pg m=, the

relationship appeared to deviate from linearity, but these were also the times when the RH was higher (>50 %,
15 Fig. 3a). Generally, the times of high RH also corresponded to times of relatively high sulphate concentrations

(Fig. 3b) and to a lesser extent high particle nitrate concentration (Fig. S1, Supporting Information). Both nitrate

and sulphate aerosol have high hygroscopicities (Petters and Kreidenweis, 2007).

10
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Similar trends were also observed in the Delhi measurements. Generally, at low RH there appears to be a linear
relationship between the reported OPC-N2 and TEOM concentrations (Fig. 4a), but this deviates from linearity at
high RH, similar to that observed in Beijing. For periods where the ambient RH in Delhi was less than 50 %, we
observed that the OPC-N2 generally recorded PM2s mass concentrations half that of the TEOM (slope of 0.48
and r? of 0.55). This was broadly similar to that observed in Beijing (Fig. 3a) and suggests that the OPC-N2
generally under-reports PM25 mass concentrations at low RH (<50 %). Also apparent from Fig. 4a, there were
times in Delhi when the RH was high (>80 %) and yet the PM2s mass concentrations by the OPC-N2 were of a
similar relationship to the TEOM at low RH.

We therefore plotted the relationship of OPC-N2 and TEOM PM2s mass concentrations coloured by the sum of
sulphate and nitrate concentrations (Fig. 4b) and generally, when the concentration of these species and RH were
high, we observed notably higher OPC-N2 concentrations relative to the reference. Both sulphate and nitrate are
highly hygroscopic aerosols and this therefore suggests that the high readings by the OPC-N2 relative to the
TEOM in Beijing and Delhi were due to water uptake by hygroscopic particles as suggested by Crilley et al.
(2018). From Figs. 3 and 4, it appears that this effect was occurring at RH above 50 %, below the deliquescence
point of ammonium sulphate (79 %) suggesting that there was uptake by other aerosols such as nitrate (Hu et al.,
2010). Nitrate aerosols also have a smoother continual take up of water (Gibson et al., 2006;Hu et al., 2010), and
this points to nitrate aerosols contributing at RH below 79 %. Aerosols with multi-component mixtures are
observed to deliquesce earlier than the deliquescence points of the individual components e.g. Pope et al. (2010).
Overall, these results from Beijing and Delhi suggest that the applied calibration depends not just on the ambient

RH but also aerosol composition.
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Figure 3: Derived OPC-N2 uncorrected PM, s mass concentrations against TEOM PM s mass concentration
measurements coloured by ambient RH (A) and sulphate concentration (B) in Beijing. The straight line indicates
the linear regression fit for concentrations below 150 pug m
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Figure 4: Derived OPC-N2 uncorrected PM2.s mass concentrations against TEOM PM:.s mass concentration
measurements coloured by (a) ambient RH and (b) sum of particle sulphate and nitrate concentration in Delhi.
The solid line is 1:1, while the dashed lines are 0.5:1 and 2:1.

3.2.2 Homogenous aerosol composition (volcano plume)

Fresh volcanic plumes are typically dominated in composition by sulphuric acid and therefore these plumes offer
an opportunity to explore using k-Koéhler theory to develop the correction factor in a substantially homogenous
aerosol mix under ambient conditions. If the RH artefact is due to aerosol hygroscopicity, then the resultant
humidogram using data collected by the OPC-N2 in the plume should resemble that for sulphuric acid. To derive
the volcanic plume humidogram, shown in Figure 5, the following steps were taken. The plume was identified at
station 789 when the collocated gas phase SO, measurement was greater than 20 ppm. The aerosol within the
plume was assumed to be composed solely of sulphuric acid with a corresponding k value of 1.19 (Wexler and
Clegg, 2002). The dry mass of the volcanic particles were calculated using Eq. (1), with RH input from the
collocated measurements at site 789. The derived humidogram was compared to the pure sulphuric acid
humidogram calculated using E-AIM model | (Fig. 5). The observed agreement between model and measurements
strongly points to particle hygroscopic growth driving the high particle mass concentrations observed by the OPC-
N2 at high RH.
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Figure 5: Comparison of humidograms from pure sulphuric acid and that observed in the Nicaragua volcanic

plume. Circles: Nicaragua plume aerosol. Dashed line: modelled sulphuric acid humidogram from the E-AIM
model.

12



https://doi.org/10.5194/amt-2019-370 Atmospheric
Preprint. Discussion started: 7 October 2019 Measurement
(© Author(s) 2019. CC BY 4.0 License. Techniques

10

15

20

Discussions

3.3 Evaluation of the OPC-N2 performance in Delhi and Birmingham

During the measurements in Delhi, the OPC-N2 typically over-reported the PM. s mass concentrations relative to
the reference (Fig. 6A). The OPC-N2 assumes a uniform particle density of 1.65 g cm in the particle counts to
mass conversion, and this density may be inappropriate for Delhi aerosol during winter. Previous measurements
of aerosol density during winter in Delhi at midday were on average 1.28+0.12 g cm (Sarangi et al., 2016), lower
than applied by the OPC-N2 and so this would not explain this discrepancy. From Fig. 6A, higher PM2s mass
concentrations relative to the reference were reported by the OPC-N2 towards the start of the measurement period
(Fig. 6A), generally during the times when the RH was high (e.g. 25-29" Jan, Fig. 6B). We also note that the
reported concentrations by the OPC-N2 appear to lose structure towards the end of the measurements in Delhi
(11™ Feb onwards, Fig. 6A), which may point to deterioration in the OPC-N2 performance (possibly due to dust
coating within the instrument). This may be the reason why the OPC-N2 reported lower concentrations relative
to the reference towards the end of the measurement period. As the OPC-N2 measured for 24 days in total, this
suggests that the lifetime of low cost particle sensors in Delhi may only be of the order of a month.
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Figure 6: Time series of reported OPC-N2 and TEOM-FDMS PM_5 mass concentrations (A) and ambient RH
(B) at lIT Delhi.

As the reported OPC-N2 concentrations at Birmingham and Delhi demonstrated an artefact due to RH (Fig. 2),
we applied the correction factor from Crilley et al. (2018), using the in situ locally derived k values. In addition,
the « for ammonium sulphate (0.61) was also used, as Di Antonio et al. (2018) suggested it may be more
representative for urban aerosols. The results of the correction factors, relative to the co-located reference
instruments are summarized in Table 2. Compared to the uncorrected OPC-N2 concentrations, application of

correction factor with both x resulted in improved performance of the reported concentrations relative to the
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reference. However, the using the locally derived « resulted in the best correction of the OPC-N2, to be within 33
% of the reference measurements, compared to using the ammonium sulphate k (Table 2).
Table 2: Slopes of uncorrected and corrected PM2s mass concentrations from the OPC-N2 relative to the

reference instruments (r? in brackets). Intercepts were not constrained to zero. There were four OPC-N2 measuring
at Bham Tyburn and the range is presented.

CORRECTED
‘ UNCORRECTED Locally K for
derived k NH1SO4
BHAM BAQS | 35 (0.24) 13(044) 05 (0.24)
DELHI 1.73(0.33) 11(0.60)  0.55(0.60)
2535 0.98-133  0.72:0.98
BHAMTYBURN | 4 64.0.67) (0.820.85)  (0.84-0.86)

We also observed that ratio of OPC-N2/GRIMM concentrations was low at high RH at Bham BAQS (Fig. 2C).
The spread in OPC/GRIMM ratios observed at high RH at Bham BAQS is indicative of a wide range of aerosol
composition with differing hygroscopocity over the 4 months. The calculated x value for each month in
Birmingham and found little variability (0.1-0.12) from October to January and suggest that on average the bulk
hygroscopicity of the aerosols was consistent, though within a large range.

3.3.1 Two-stage correction methodology for datasets with wide range of ambient RH

For the Delhi dataset, the observed wide range of ambient RH may have affected the correction factor (Fig. 2), as
particle hygroscopic growth would be limited at low RH. Consequently at low RH, defined as RH <60 %, a linear
correction factor may be more appropriate. From Fig. 2, there appeared to be a linear relationship between the
OPC-N2 and TEOM PM2s measurements for RH less 60 %. We therefore calculated a linear correction factor for
the OPC-N2 relative to the TEOM when the ambient RH was less than 60 % (Fig. S3, Supporting Information)
and applied it the reported OPC-N2 PM;s concentrations. Using this normalised OPC-N2 concentrations, the
humidogram was replotted (Fig. 7), and the corresponding « fit calculated (Fig. 7). Using this normalised OPC-
N2 measurements, the « line better matches the observed OPC/TEOM (Fig. 7) compared to using the uncorrected
OPC-N2 data (Fig. 2). The calculated x value from Fig. 7 was 0.45, which may be considered more realistic
considering the high sulphate and nitrate loading in Delhi (Fig. 4). Using the « from Fig. 7, we corrected the
normalised OPC-N2 PM,s concentrations via Eq. (2) and (3). The time series of the corrected OPC-N2
concentrations is shown in Fig. S4 (Supporting Information), and the application of this two-stage correction
method resulted in the OPC-N2 being in good agreement with the reference instrument (slope of 1.1, r? of 0.61).
However, we note that this is similar to the agreement observed when the OPC-N2 was corrected without the two-
stage approach (Table 2). However, the two-stage approach resulted in more physically realistic humidograms
and « (Fig. 7) for Delhi and this approach may be more appropriate for locations that experience a wide range of
ambient RH.
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Figure 7: Humidograms for Delhi using normalised OPC-N2 PM.s mass concentrations with corresponding x
fit.

3.4 On the global applicability of correction factors

The results so far point to the need to know aerosol composition in order to accurately apply a suitable correction
factor, in agreement with previous work (Di Antonio et al., 2018;Crilley et al., 2018). However, to determine
aerosol composition at the necessary time resolution would require expensive co-located equipment measuring
aerosol composition (e.g. an Aerosol Mass Spectrometer) and somewhat negating the USP of a low cost monitor.
Di Antonio et al. (2018) suggest air mass origin (via HYSPLIT) could provide compositional information in order
to determine the appropriate k value to use in the correction. We therefore examined the long-term Birmingham
dataset for times when the applied correction factor over/under-corrected the OPC-N2 mass concentrations
relative to reference instrument. However, unlike Di Antonio et al. (2018) we could not find any consistent
patterns with respect to air mass origin and the performance of the correction factor. Furthermore, in order to
apply a correction factor via this approach would require significant post-processing time. This therefore raises

the question if it remains a ‘low-cost” option.

To remain a low-cost option, a simple correction that can be applied to the OPC-N2 irrespective of aerosol
composition changes is needed, though this may decrease the accuracy of the correction factor. For many locations
around the world, ambient PM. s mass concentrations are measured using gravimetric-based techniques (e.g. filters
or TEOM) for regulatory purposes. Consequently, we have focused on developing a simple correction factor using
TEOM data as a reference. To explore if this was viable we plotted OPC/TEOM ratio for all sites where this was
available (Bham Tyburn, Delhi, Beijing) on one plot (Fig. 8). Note we used the two-stage correction for the OPC-
N2 measurements in Delhi as described in Section 3.3.1 for Fig. 8. We did not apply this correction to the Bham
Tyburn data as the RH was >60 %.
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Figure 8: Humidogram using OPC-N2 data where there was dry reference mass (TEOM), coloured by location.
The resultant « fit (black) was generated using data from all three sites.

From Fig. 8, a x of 0.33 (assuming a uniform particle density of 1.65 for all sites) was calculated, slightly higher
than the average of 0.3 suggested for continental regions (Pringle et al., 2010). We applied this k of 0.33 to correct
the OPC-N2 data at all sites, as well the global average for continental regions (0.3), with the results summarised
in Table 3. Variation in the k values generally resulted in changes to the slope, while the correlation co-efficient
remained similar. While the in situ derived « resulted in a reasonable correction of the OPC-N2 relative to the
reference (+10-30 %, Table 3), using the k from Fig. 8 (0.33) was comparable. Correcting the datasets using the
global « of 0.33 resulted agreement with reference instruments of within 50 % at all sites, with the Beijing, Delhi
and some of the Bham Tyburn corrected OPC-N2 being within 20 % of reference (Table 3). The only site with a
notably poorer agreement using the global compared to the in situ k was Bham BAQS, and this may be because
the locally derived « for the Bham BAQS measurements (0.1) was different compared to the other sites. This
notwithstanding we do note that using a k of 0.33 resulted in a significant improvement in accuracy compared to
the uncorrected OPC-N2 derived particle mass concentrations at Bham BAQS (slope of 3.5, Table 2). Overall,
when considering the most appropriate correction or k the results from Table 3 suggest that a locally derived x,
based on an in situ calibration with reference instrumentation, is preferable. However, the global « derived using
data from the three urban background locations in this study (0.33, Fig. 8) gave comparable results to the in situ
derived correction (Table 3). Therefore, it suggests that using this « value or suitable literature values for urban

background sites may be acceptable should there be no reference instruments available for calibration.
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Table 3: Comparison of performance local and the global correction factors for correcting OPC-N2 using the
Crilley et al. (2018) method, shown as a slope relative to the reference instrument, with r? values given in
parentheses. Intercepts were not constrained to zero.

SITE INSITU GLOBAL  CONTINENTAL
DERIVED (k=0.33) AVERAGE (x=0.3)
CORRECTION

BHAM 0.98-1.33 1.1-15 12-16

TYBURN (0.82-0.85) (0.82-0.85)  (0.82-0.85)

DELHI 1.1 (0.60) 0.80 (0.61)  0.84 (0.61)

BHAM BAQS | 0.96 (0.42) 054 (0.45) 057 (0.45)

BEIJING | 1.35(0.87) 0.85(0.85)  0.87 (0.85)

4.0 Conclusions

Recent work has demonstrated that aerosol hygroscopocity is likely the key parameter to consider when correcting
particle mass concentration derived by a low-cost OPC, particularly at high ambient RH. Consequently, correction
factors have been developed that apply k-Kohler theory to correct for the influence of water uptake by hygroscopic
aerosols. In the current work, we explored the performance of this correction factor using datasets with reference
instruments and a low-cost OPC (OPC-N2) co-located in environments that had differing aerosol composition,
particle load and ambient RH. We observed evidence that the enhanced high concentrations reported by the OPC-
N2 relative to reference instrumentation during periods of high RH was related to the amount of hygroscopic
aerosols (sulphate and nitrate) and RH, as expected if the bulk aerosol hygroscopicity was driving this response.
This was most clearly observed during measurements in volcanic plumes in Nicaragua, where the observed
humidogram closely resembled the calculated pure sulphuric acid humidogram. This agreement between model
and measurements strongly points to particle hygroscopic growth driving the high particle mass concentrations
observed by the OPC-N2 during times of high ambient RH.

The results indicate that the particle mass concentration measurements reported by low-cost OPC during periods
of high RH (>60 %) need to be corrected for aerosol hygroscopic growth. We employed the correction factor
method outlined in Crilley et al. (2018) to account for this and observed corrected OPC-N2 PM;s mass
concentrations to be within 33 % of reference at all sites. The choice of applied « was found to be critical. The
results from the current work indicate that an in situ derived « (using suitable reference instrumentation) leads to
the most accurate correction relative to co-located reference instruments. The in situ derived k would also likely
be dependent on the time of year if there were any local seasonality to the bulk aerosol composition, and this

would need to be considered when determining appropriate calibration procedures.

An average « of 0.33 was calculated using measurements from three urban locations around the globe (Beijing,
Birmingham, and Delhi). Applying this global k in the correction factor notably improved reported OPC-N2 PM_ 5
mass concentrations relative to uncorrected, to be within 50 % of reference measurements at all sites. Therefore,
for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a
literature « value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and
RH (such as Nairobi), a simple calibration against gravimetric measurements (using suitable reference
instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the
Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low cost PM

Sensors.
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